
CPS122 Lecture: Input-Output

Last Revised April 3, 2017
Objectives:

1. To discuss IO to System.in/out/err
2. To introduce the abstract notion of a “stream”
3. To introduce the java File, Input/OutputStream, and Reader/Writer abstractions
4. To show how to read and write primitive types and strings as either binary or text

data
5. To show how to serialize/deserialize objects
6. To discuss exceptions in the context of input-output

 Materials:

1. Magnetic tape to show
2. Projectable showing binary and text representations of data, and different kinds of

text representations
3. Projectable of various representations for the line “Hello”
4. Handout of diagram showing layered structure of major java.io classes, plus

version to project.
5. Demo programs: BinaryFileMaker.java, BinaryFileAccessor.java,

TextFileMaker.java, TextFileAccessor.java, RandomFileAccessor.java
6. Projectable of read and write code from LibraryDatabase.java

I. Introduction to Input-Output

A. Computer programs generally don’t exist in isolation, but rather as part of
complete software systems (e.g. a payroll system; a web-based order
taking system, etc). Moreover, it is quite common for a complete system
to involve programs running on multiple computers communicating with
one another over a network.

Such systems must work with three basic types of data:

1

1. Permanent data - data that the system must maintain over a long
period of time - e.g.

a) Payroll system: data on employees (names, SSN’s, pay rates, year-
to-date pay and withholding, etc.)

b) Web-based order system: data on customers (name, address, credit
card number, etc.) and available goods (description, price, etc.)

This data typically resides on disk

2. Transient data - data that is exists outside of any particular program,
but which is needed only for a brief period of time (hours, or days)

a) Payroll system: weekly “timecard” information for employees who
worked during a given pay period (typically keyed into the
computer by a payroll clerk, perhaps from written time sheets)

b) Web-based order system: individual customer orders (typically sent
over the Internet from the customer’s browser).

This data may reside on a variety of media: currently often on disk
or as packets transmitted over the Internet.

3. Temporary data - data that is only in existence when a given program
is running. The variables that we have been using to store and
manipulate data fall into this category. They reside in the computer’s
RAM only during the time the program of which they are a part is
running.

4. In addition, many programs are responsible for producing different
kinds of printed reports.

2

B. In the case of disk files used for permanent or transient data, and also in
the case of communication streams between systems, some further
distinctions are important:

1. The distinction between pure binary data and text data.

a) In pure binary data, information is stored as a sequence of bits
identical to the internal binary representation of the entity being
stored.

EXAMPLE: ints are stored as 32 bits, grouped into four 8-bit bytes.
The int 42 has binary representation

00000000 00000000 00000000 00101010 	 PROJECT

b) Text data is represented in binary as well, but with two important
distinctions:

(1) In text data, information is stored as the binary representation of
a series of characters that constitute the printed representation
of the value. If the file represents characters in ASCII (as most
files do - even those accessed by Java) - each character is
represented by one byte. For example, the int 42 has ASCII
representation 00110100 00110010

PROJECT

(In this case, the text representation is more compact. That is
not the case in general - binary encoding can store values up to
2 billion in four bytes; these would require 10 characters.)

(2)Of course, textual data can also be represented using Unicode,
in which case 42 would have the representation
00000000 00110100 00000000 00110010

PROJECT

3

(3)The data is typically stored as a series of lines, with the lines
marked in one of several ways (depending on the platform
being used).

(a) Some platforms have used a “count + data” format for lines,
where each line is represented by a pure binary integer
encoding the number of characters in the line, followed by
the individual characters, each encoded in a form such as
ASCII.

(b)Most platforms represent a line by a sequence of characters
followed by a special “line-end” marker - which varies from
platform to platform.

i) On Unix-based platforms (including Mac OS X): \n

ii) On Windows platforms: \r \n

Example: if a line consisted of the word "Hello", its
binary representation would be one of the following:

PROJECT

c) Note that for either binary data or text data the data on disk is a bit
pattern; but you have to know which way it is represented to
interpret it properly - e.g. if the binary representation for 42 were
interpreted as if it were text, it would be interpreted as ‘*’; and if
the text representation for 42 were interpreted as if it were binary, it
would be interpreted as 13362.

4

Unix/OSX:	 	 01001000 01100101 01101100 01101100 01101111 00001010

Windows:	 	 01001000 01100101 01101100 01101100 01101111 00001101 00001010

d) Frequently, permanent data is stored in binary files. Transient data
is often stored in text files, so that it can be easily manipulated by
utility programs that work with text files such as text editors.
(Transient data may be sent over a network in either form.)
Internally, temporary data is generally represented in binary, unless
it is textual - e.g. the Java primitive types (int, boolean, double, etc)
are represented in binary, but Strings are text data.

2. The distinction between sequential and direct-access files on disk.

a) Historically, the earliest media used for long-term storage of data
only supported reading and writing data sequentially, beginning at
the start of the medium.

EXAMPLE: Magnetic tape

Also, some sorts of data come in an inherently sequential form -
e.g. data typed on a keyboard, or packets arriving over the Internet.

b) Disks allow direct access to data anywhere on the disk in fairly
short time.

A technical note on terminology: Disk files are direct access but
not random access. The difference is that random access implies
that the time to access a given item of data is independent of where
it is located. On a disk, it is possible to access any location
directly, but a location that is physically closer to the last one
accessed can be accessed more quickly.

c) Frequently, transient data is stored in sequential files. Often,
permanent data is stored in direct access files to permit direct
access to the desired information on demand. (E.g. a web order
system would exhibit unacceptable performance if it had to read
through all the customer information from the beginning to find the
desired customer when a new order arrived!)

5

C. In the overall structure of a computer system, a program is directly
responsible for managing its own variables, but all other kinds of data
(disk files, network packets, printed documents) are managed by the
operating system.

1. The portion of the operating system that deals with these issues is
called the input-output system - or IO system for short.

(Note the use of the terms BIOS = basic input output system and DOS
= disk operating system in the PC world)

2. Indeed, this was one of the original motivations for developing
operating systems in the first place.

a) To avoid burdening each program with detailed knowledge of the
particular physical IO devices.

b) To make it easy to change the specific device used for input-output
without requiring massive overhaul of the program.

c) To provide a measure of security for data, so that an erroneous (or
malicious) program cannot easily destroy important data.

3. Although the file system portion of the operating system was designed
to work with disk files, it generally allows access to other kinds of
input output devices by treating them as if they were disk files. This
includes devices such as the keyboard, as well as the network.

Example: On Unix systems when terminal input-output is used, the
“file” /dev/tty is actually the user’s terminal

D. When a program needs to access a file, it typically does this through an
abstraction called a stream - which represents a connection to a file (or
some other medium).

6

II. Input-Output in Java

A. The designers of Java faced an important challenge. The input-output
system is part of the operating system, and there are significant
differences between the input output systems between various operating
systems.

Example: file specification syntax

1. On Unix systems, the names of disks and directories appearing in the
full path specification for a file are separated by slashes (e.g. your
Library project on our server is actually stored in the directory
/home/group-login-name/Library).

2. On Wintel systems, a backslash (\) is used instead.

3. On older (OS 9 and before - which is what was in use at the time Java
was first developed) Macintoshes, a colon (:) was used.

Since Java is meant to be platform-independent, it was necessary to
develop a Java IO system with its own set of conventions that can be
implemented on top of each operating systems own mechanisms.

B. Reflecting Java's Unix heritage, Java programs run from the command
line have easy access to three standard streams: System.in (standard
input), System.out (standard output) and System.err (standard error).
This can be used for simple IO, but is not sufficient for more
sophisticated applications, which typically use graphical user interfaces
(GUIs) for interacting with the user, and files for storage of transient and
permanent data. We focus on the latter today.

C. The Java IO system is housed in the package java.io. This package
implements a hierarchy of fundamental abstractions, implemented by
objects that use other, lower-level objects. There are quite a few classes in
this package. We will look at only a few.

D. The structure of this package is based on a an architectural pattern we
looked at earlier - the notion of a layered system in which a complex task

7

is broken down into a series of layers, with each layer using the services
of the layer immediately below it. Note: We will not discuss all the
methods at each layer - only the most critical ones in terms of
establishing the functionality of each layer.

HANDOUT DIAGRAM AND PROJECT IT

1. At the lowest level, the class File represents the full name of a
physical file or directory on a disk, which may or may not actually
exist. This class deals with platform-specific issues in terms of path-
specification syntax.

a) A File object supports basic operations such as inquiries about the
file’s existence and, if it exists, inquires about its size and last
modification date and operations like renaming or deleting the file.

b) A File object does not support transferring information to or from
the file. (I.e. it represents the name of a container for information,
but provides no way to actually access the information inside it.)

c) It would, perhaps, have been clearer if the designers of java had
called the class something other than File - e.g. FileName or
FilePath.

2. At the next level up, there are three options, depending on whether the
file being accessed is a sequential binary file, a sequential text file, or a
direct access file. In each case, the object at this layer can be built on
top of a File object, or in some cases on top of some other facility
(such as a network connection).

a) For work with sequential binary files, the classes InputStream and
OutputStream are provided. These presume that the underlying
information is stored/transmitted in binary.

8

(1)An InputStream permits a program to read an individual byte, or a
series of bytes. It has methods:
int read() // Reads a single byte-returned as a value in
 // the range 0..255; or -1 if at end of file
int read(byte []) // Reads a series of bytes into an array -
 // returns number of bytes actually read -
 // -1 if at end of file

(2)An OutputStream permits a program to write an individual byte,
or a series of bytes. It has methods
void write(int) // Write a single byte
void write(byte []) // Write a series of bytes from an array

(3)The classes at this level only provide for manipulation of
individual bytes (in a binary file).

b) For work with text files, the classes Reader and Writer are
provided. These presume that the underlying information is stored/
transmitted in textual form.

(1)A Reader provides methods to read a single character or a series of
characters
int read() // Returns code for character read or -1 if
 // end of file
int read(char []) // Reads a series of characters into an array
 // Returns number of characters read; -1 if
 // eof

(2)A Writer provides methods to write a single character or series of
characters
void write(int) // Writes a single character given code
void write(char []) // Writes series of characters from array
void write(String) // Writes series of characters from string

(3)The classes at this level only provide for manipulation of
individual characters.

9

(4)One of the issues these classes must deal with is the fact that
Java represents characters internally using 16-bit Unicode, but
many disk files are 8-bit ASCII, and data transmitted over the
network may use an encoding known as UTF-8. (The latter is a
scheme under which characters that can be represented using 7
bit ASCII are represented by a single byte, while all other
characters are represented using 2 or 3 bytes.)

(a) Conversion between these schemes is handled by Reader /
Writer objects. A Reader or Writer object “knows” what
representation is actually used for characters in a particular
file or network connection.

(b)Thus, Reader and Writer should always be used with text
data - the various forms of binary streams should never be
used, since they do not deal with this issue.

c) For work with direct access files, the class RandomAccessFile is
provided. This presumes that the underlying information is stored in
binary (there is no analogous structure for text or for information
transmitted over a network, because direct access is not really practical
in these cases due to varying-size data representation in text or
transmission-time issues over a network.)

A RandomAccessFile can support both reading and writing of data
from/to a direct access disk file. (Note that the name of the class is
really not well chosen - since disk files support direct access but not
true random access!) This class actually corresponds to both this layer
and the next layer up in the design, so we will mention some methods
now and discuss it again in conjunction with the next level up.

10

int read() // Reads a single byte-returned as a value in
 // the range 0..255; or -1 if at end of file
int read(byte []) // Reads a series of bytes into an array -
 // returns number of bytes actually read
void write(int) // Writes a single character specified by code
void write(char []) // Writes a series of characters from array
void seek(long) // Positions the file pointer so that next
 // read or write will occur at a specific
 // position in the file

A RandomAccessFile object supports both reading and writing data
with the same object. This is because it is common with permanent
data to read, modify, and update some value “in place” (e.g. the total
outstanding amount owed by a customer). A given file may be opened
in read-only mode, which would make the write operations fail on that
file.

3. The next level up again provides two options, depending on whether
the program wants to read/write a binary file or a text file. In each
case, the object at this layer is built on top of an object of the
appropriate kind at the next layer down. The class RandomAccess file
also provides services at this layer.

a) For work with sequential binary files, the classes DataInputStream
and DataOutputStream are provided.

(1)A DataInputStream is always constructed on top of an
InputStream. It allows the program to read any of the primitive
data types from a binary file, by getting the appropriate number
of bytes from the underlying stream and converting them into the
appropriate internal type. It has methods
boolean readBoolean()
char readChar()
byte readByte()
short readShort()
int readInt()
long readLong()
float readFloat()
double readDouble()

11

There is no method to read a String. To read a String, the
program must know how long of a String to expect, and then
must do repeated readChar() operations. This is because there is
no standard way of marking the end of a string in a binary file.

(2)A DataOutputStream is always constructed on top of an
OutputStream. It allows the program to write any of the
primitive types to a binary file, by converting the internal type
into a sequence of bytes and then writing them to the
underlying stream. It has methods
void writeBoolean(boolean)
void writeChar(char)
void writeByte(byte)
void writeShort(short)
void writeInt(int)
void writeLong(long)
void writeFloat(float)
void writeDouble(double)

It also has a method void writeChars(String) - which simply
does a writeChar for each character in the string. (Not doing
anything special to specify the end of the string.)

(3) In the case of character data (char and String), data is read/written as
16-bit Unicode values - which is not the standard representation for
character data on most platforms, of course. However, this sort of
stream is usually processed only by other programs written in Java.

b) For work with text files, the classes BufferedReader and
PrintWriter are defined.

(1)A BufferedReader is always constructed on top of a Reader. It
adds one new method
String readLine() // Reads a line - returns null (not "") if
 // at end of file

12

(2)A PrintWriter is always constructed on top of a Writer. It allows
the program to write the textual representation of any primitive
type, with optional line termination after it, by converting the
internal type to a sequence of characters and then writing each
character in turn to the underlying stream.

void print/println(boolean)
void print/println(char)
void print/println(byte)
void print/println(short)
void print/println(int)
void print/println(long)
void print/println(float)
void print/println(double)
void println() // Just output newline - no data

(3)There is an asymmetry in the structure of the java library: there
are provisions for writing any primitive type in its textual form,
but no direct provision for reading the textual form of a
primitive type.

(a) The principal reason for this is that reading requires some
sort of lookahead read - e.g. when reading the number 42
from a file, you don’t know you’ve read all the digits until
you see some non-digit character such as a space. (If you’ve
seen 4 and 2 thus far, the next character could be a 3 in
which case the number is 423.)

(b)To read numeric data from a text file, one typically reads a
line of characters from a BufferedReader, and then converts
it to binary form using various "parse" methods.

c) The class RandomAccessFile provides methods at this layer as
well for use with direct-access binary files:
boolean readBoolean()
char readChar()
byte readByte()
short readShort()
int readInt()

13

long readLong()
float readFloat()
double readDouble()

void writeBoolean(boolean)
void writeChar(char)
void writeByte(byte)
void writeShort(short)
void writeInt(int)
void writeLong(long)
void writeFloat(float)
void writeDouble(double)
void writeBytes(String) // Writes each character as 8 bits
void writeChars(String) // Writes each character as 16 bits

4. In addition to what we have discussed here, there are many other
options - e.g. a stream can be built on top of the console or a network
connection or a pipe or even an array of bytes; and a reader/writer can
be built on top of a stream (and hence anything a stream can be built
on top of) or a character string.

5. In addition to the operations we have discussed thus far, there are two
other very important operations on a file.

a) opening or creating the file - which initially establishes access to it.
In Java, this is taken care of by the constructor for the various
classes that provide access to a file. (But not by the class File per
se, because it doesn’t actually provide access to the content of a
file.)

(1)The constructors for sequential input files (FileInputStream,
FileReader) require that the user specify an existing file to be
opened.

(2)The constructors for sequential output files (FileOutputStream,
FileWriter) normally create a new file. However, there is one
form of the constructor that allows specification of appending to
an existing file instead.

14

(3)The constructor for a random access file opens an existing file if
one of the specified name exists; otherwise it creates a new,
empty file. It allows the user to specify one of two modes: “r” -
read only, or “rw”, read and write/update.

b) closing the file - which terminates access to the file. All of the file
access classes provide a method

void close()

In the case of a file that you are writing data to, it is extremely
important to remember to close the file! The reason for this is that
data is transferred to/from a disk in units called blocks (typically
some multiple of 512 bytes.) When you write data to a file, it is
accumulated in memory until there is enough to make a complete
block, and then the whole block is physically written to the disk.
This means that, typically, when a program finishes writing to a file
there will be a partial block that has not yet been physically written
to disk. One thing the close() operation does is to flush this last
partial block to the disk. Failing to close a file when you are
through writing to it can result in loss of data.

6. As a final note: printers are considered input-output devices on most
computer systems, and most operating systems provide access to
printers through their file system. However, the Java support for
access to a printer is through the abstract windowing tool kit (awt) - in
essence, one can paint on a printer the way one paints in a window.

E. The java.io package makes extensive use of the Decorator (Wrapper)
pattern, which we introduced when we talked about design patterns.

1. the java.io package provides many kinds of InputStreams - objects
that can read streams of bytes from a variety of different sources - e.g.

a) FileInputStream - reads bytes from a disk file

15

b) ByteArrayInputStream - “reads” bytes from an array

c) PipedInputStream - reads bytes from a pipe (a connection between
two processes running on the same computer such that one process
can “feed” data to another through the pipe).

d) A network socket - reads bytes sent over a network from another
computer.

2. Recall that, in java, characters of text are not represented by single
bytes, but by using Unicode, which represents characters as pairs of
bytes - but most platforms represent characters in text files either
using plain ASCII or an encoding called UTF-8 which stores
"standard" characters using one byte, but may use up to 3 bytes for
some less common characters.

a) Therefore, the java.io package defines a Reader class (and various
subclasses) that supports a read() method that reads a single
character from some source To this, it may actually need to read
just one byte and pad it out with 0’s - or it may need to read two or
even three bytes.

b) Rather than having to define a Reader subclass for every possible
kind of input source, the java.io package includes a wrapper called
InputStreamReader that allows any input stream to function as a
Reader - i.e. each call to its read() method reads the appropriate
number of bytes from the underlying input stream and returns the
result as a Unicode character.

(The package also includes several "convenience classes" such as
FileReader that work with an InputStreamReader under the hood.)

3. Moreover, when processing text programs often need to work with
complete lines of text - not just individual characters. A line of text is
a sequence of characters terminated by a line terminator.

16

a) However, as you recall, the line terminator is platform-specific and
environment-specific

b) Therefore, the java.io package includes a wrapper called
BufferedReader that allows any reader to be used as a source of
complete lines. A BufferedReader has - in addition to the standard
individual character read() method - a readLine() method that
keeps reading characters until it has read a line terminator, and
then returns a String composed of all the characters read except the
terminator (i.e. a platform-independent representation of the
contents of the line.)

4. A major advantage of the “wrapper” approach used by the java.io
package is that it avoids a proliferation of classes. - e.g. we don’t
need a special kind of BufferedReader for files, and a different one for
pipes, and a different one for network connections, etc. - instead, a
single BufferedReader wrapper can build the necessary functionality
on top of any kind of Reader; and a single InputStreamReader
wrapper can build the necessary functionality on top of any input
stream.

We will see examples of this in the demos which follow.

F.SHOW, DEMO

1. BinaryFileMaker.java

a) Use of JFileChooser

b) Use of constructors wrapped around constructors

c) Writing of various kinds of data to file

17

d) Show contents of file in TextWrangler - note how most of it is
unreadable

e) Show raw binary using od -t u1

f) Get file size - show how this follows from data written to it

1 byte for boolean, byte
2 bytes for char, short
4 bytes for int, float
8 bytes for long, double
4 bytes for length of string, plus 2 bytes per character

2. BinaryFileAccessor.java

a) Use of JFileChooser

b) Use of constructors wrapped around constructors

c) Reading of various kinds of data from file

3. TextFileMaker.java

a) Use of JFileChooser

b) Use of constructors wrapped around constructors

c) Writing of various kinds of data to file

d) Show contents of file in TextWrangler- note how all of it is
readable

e) Also show binary using od -t u1, od -t c

18

4. TextFileAccessor.java

a) Use of JFileChooser

b) Use of constructors wrapped around constructors

c) Reading of various kinds of data from file

5. RandomFileAccessor.java

a) Use of JFileChooser

b) Use of constructors wrapped around constructors

c) Positioning using seek

d) Reading of various kinds of data from various positions in the file:

Position 0 - boolean is read correctly
Position 1 - char is read correctly
Position 3 - byte is read correctly
Position 4 - short is read correctly
Position 6 - int is read correctly
Position 10 - long is read correctly
Position 18 - float is read correctly
Position 22 - double is read correctly

III.Serialization

A. The various types of files we have discussed provide support for reading and
writing the various primitive types. What about reading and writing objects?

B. A solution used in many OO languages, and in the earliest version of
Java, was to require that the programmer create methods to read or write
an object that needs to be saved to disk by reading and writing its
individual fields.

19

C. Early in its history, Java added support for object serialization, which
allows objects to be written and read in binary form just like primitive
types.

1. This is the approach used in your Library project.

PROJECT Excerpts from LibraryDatabase.java that handle reading
and writing

a) The class ObjectInputStream builds on an InputStream, and
supports a method readObject() (as well as methods for reading
primitive types)

b) The class ObjectOutput builds on an OutputStream, and supports a
method writeObject() (as well as methods for writing primitive
types)

2. To be eligible to be read/written from/to a stream, an object’s class must
be declared as implementing Serializable. The Java language takes care
of creating the code necessary to actually read and write the object.

D. There is a lot more involved here than might first appear, because objects
can contain references to other objects.

Example: Suppose we stored registration information about courses using
a structure like this (simplified form what we used earlier in a lab)

That is, each Student object holds references to the Course objects for the
courses the student is enrolled in (perhaps an array or some other sort of
collection; and each Course object similarly holds references to the
Student objects for the students registered in it.

20

Now consider what happens if we try to save one Student object to disk:

1. That Student object needs to be saved

2. The Course objects for each course the student is in needs to be saved.

3. The Student objects for each student in each course needs to be saved
- which can result in saving more Course objects ...

It is not inconceivable that saving one Student object might result in
saving the entire database!

4. Of course, we only want to save each object once - e.g. if ten students
in this course are both enrolled in Calculus II, we only want to save
the Calculus II object once; and when we do, we don't want to save
the Student objects for these individuals again.

E. This is all taken care of by object serialization.

IV.Exceptions

A. IO operations are inherently prone to possible failure for a variety of
reasons

1. Attempting to perform an operation that is inherently impossible:

a) Attempting to open a non-existent file

b) Attempting to create a file or write on a read-only device (e.g. a
CDROM) or a device that has no room available.

c) Attempting to read past the end of a file.

21

2. Many operating systems have a file permission mechanism that allows
the owner of a file to control what users may access it. An attempt to
access a file in violation of these permissions is not allowed.

3. IO systems can have hardware problems such as

a) Disk errors due to defects in the disk

b) Network errors due to another system that one is communicating
with going down or communications problems

4. Data format problems when reading data from a text file - e.g.
encountering a letter when trying to read a number. - etc.

B. We have already met the general mechanism Java uses for dealing with
issues like this - the exception mechanism. Exception-handling is
particularly prominent when dealing with IO operations.

1. The package java.io defines a general exception category known as
IOException with many subclasses - e.g. (briefly explain each)

a) EOFException

b) FileNotFoundException

c) InterruptedIOException

d) etc., etc.

e) Specific implementations may also create specific subclasses of
IOException to deal with various specialized problems.

Most of the io methods are declared as throwers (or propagators)
for IOException.

22

2. In addition, if you are reading input as character strings to be parsed as
numbers, you also need to be prepared to deal with exceptions such as
NumberFormatException.

V. Communicating over a Network

A. The examples we have considered thus far have focussed on performing
IO operations on disk files. Often, though, programs communicate with
other programs over a network connection.

B. For network communication, the fundamental abstraction is called a
sockets, which serves as an endpoint for communication to another
computer.

1. When two computers are communicating, there exists a socket on each
which is connected over the network to the corresponding socket on
the other machine. Thus, sockets normally come in pairs - one on
each machine.

2. Associated with each socket is an input stream and an output stream.
Whatever is written to the output stream on one computer becomes
available to be read from the input stream on the other computer, and
vice versa.

That is, a pair of connected sockets behaves like a “tin-can” telephone.

3. Of course, this creates the question of how a socket pair gets created
in the first place. To make this possible, there is a special kind of
socket called a server socket which isn’t actually connected to any
other socket. Rather, it waits for a connection attempt from some
other computer and then creates a socket connected to the socket that
attempted the connection.

4. We will look at this in more detail in CPS221 next year.

23

